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1. Generic mechanisms of organocatalyticreactivity
——Covalent-based modes of activation
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1. Generic mechanisms of organocatalyticreactivity
——Non-covalent approaches
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1. Generic mechanisms of organocatalyticreactivity
——Non-covalent approaches

How to further expand the synthetic potential of organocatalysis?
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2. Dual-catalyst systems—covalent organocatalysis
——Merging photoredox and enamine catalysis

modest reactivity of alkyl halides:

N-alkylation, self-aldol condensation
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2. Dual-catalyst systems—covalent organocatalysis
——Merging SOMO activation / iminium-ion and photoredox catalysis

weakened allylic C-H of VI:

DABCO → proton abstraction
reactive α-iminyl radical cation VII:

β-scission → intra. SET red.
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2. Dual-catalyst systems—non-covalent organocatalysis
——Merging Brønsted acid / ion-pair and photoredox catalysis

tight hydrogen-bonding → PCET:

aza-pinacol cyclization

ion pair:

radical coupling
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3. Single-catalyst systems— organocatalysis in the excited state
——Merging Enamine and photoredox catalysis

control experiment of α-alkylation → light promoted chain propagation

direct photoexcitation(near-UV region): 

potent single-electron reductant

electron donor-acceptor

α-functionalization: phenacyl alkylation, amination, and arylsulfonyl alkylation of 

aldehydes and the alkylation of cyclic ketones

ground-state enamines: 

stereochemical control
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3. Single-catalyst systems— organocatalysis in the excited state
——Merging PTC / iminium and photoredox catalysis

electronic similarities 

with enamines:

π (donor) → σ* (acceptor)
cinchonine-derived phase-

transfer catalyst

violet light excitation:

strong oxidant II*

organic silanes: non-

nucleophilic substrates

β-enaminyl

radical XIII



1. Silvi, M. and Melchiorre, P. Nature 2018, 554, 41–49.

13

3. Single-catalyst systems— organocatalysis in the excited state
——Hydrogen-bonding catalysis in asymmetric photochemistry

It’s hard to require the catalytic stereocontrol of a photochemical process in a 

high-energy hypersurface

light-triggered stereocontrolled [2 + 2] cyclization
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3. Single-catalyst systems— organocatalysis in the excited state
——Enzyme cofactors in asymmetric photochemistry

native polar reactivity of enzyme: ketone → chiral alcohol;

native polar reactivity of NADH: hydride source → strong reducing agent;
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Thank you for your attention!


