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Classical carboxylic acid to amine interconversions

» Schimidt reaction
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Classical amide-bond formations

» Ester amine coupling
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» Recent nickel-catalyzed protocol
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This work

> Direct transformation of ester or amides into amines

C-N bond formation
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New decarbonylative amination of carboxylic and derivatives.



Optimization of the reaction conditions

O 1. [Ni(cod),] or Ni(OAc),
Ligand NH
OPh NH base, additive .
- L — -
Ph” > Ph 2. Acidic Hydrolysis
1a 2 3a
Entry [Ni] Ligand Base Additive Yield
(x mol %) (2 equiv) (2 equiv) [%]®!
1 [Ni(cod),] IPr-HCI (20) Cs,CO; - 0
2 [Ni(cod),] P"Bu; (20) Cs,CO, - 0
3 [Ni(cod),] PCy; (20) Cs,CO;, - 0
4 [Ni(cod),] dcype (10) Cs,CO;, - 14
5 [Ni(cod),]  dcypf (10) Cs,CO; B trace
6 [Ni(cod),]  dcype (20) Cs,CO, - 17
7 [Ni(cod),]  dcype (20) Li,CO, - 21
8 [Ni(cod),]  dcype (20) K,CO, B 31
9 [Ni(cod),] dcype (20) Na,CO, - 31
10 [Ni(cod),]  dcype (20) K;PO, - 42
[a] IPr-HCI=1,3-bis(2,6- diisopropylphenyl)imidazolium chloride, dcype=1,2-

bis(dicyclohexylphosphino)-ethane, dcypf=1,1’-bis(dicyclohexylphosphino)

ferrocene. Reaction conditions: phenyl naphthalene-2- carboxylate (1a; 0.2 mmol),
benzophenone imine 2 (0.3 mmol), [Ni-(cod),] (0.02 mmol), ligand (0.02 mmol or 0.04
mmol), base (0.4 mmol) in toluene (1 mL) at 160°C, 12 h. [b] Yield of isolated products. 5



Optimization of the reaction conditions

OPh

1. [Ni(cod),] or Ni(OAc),

Ligand

NH base, additive

-+
|:>h)L Ph 2. Acidic Hydrolysis

NH,
-

1a 2 3a
Entry [Ni] Ligand Base Additive Yield
(x mol 26) (2 equiv) (2 equiv) [26]™]
11 [Ni(cod),] dcype (20) NaO'Bu - 0
121 [Ni(cod),] dcype (20) K;PO, — 56
13 [Ni(cod),] dcype (20) K;PO, LiCl 63
141 [Ni(cod),]  dcype (20) K;PO, LiCl 84
150 [Ni(cod),] dcype (20) K;PO, LiCl 87
16l [Ni(cod),] — K;PO, LiCl 0
[ — dcype (20) K;PO, LiCl 0
18l Ni(OAc), dcype (20) K;PO, — 80
190 Ni(OAc), dcype (20) K;PO, Mnf 63
20(c Ni(OAc), dcype (20) K;PO, Et;SiHE 77

[c] Benzophenone imine 2 (2 equiv), K;PO, (3 equiv). [d] 48 h. [e] 170°C.
[f] Mn powder (1.5 equiv). [g] Et;SiH (20 mol%). cod=1,5-cyclooctadiene.



Decarbonylative amination of the naphthyl ester
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amide bond formation

Other esters such as methyl and benzyl esters were not suitable for
this transformation as it allows for a chemoselective amination of
differently protected ester.



Scope with respect to the aryl esters

1. [Ni{cod}.]/dcype
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[a] Reaction conditions: aryl ester 1a—r (0.2 mmol), benzophenone imine 2
(0.4 mmol), [Ni(cod),] (0.02 mmol), dcype (0.04 mmol), K;PO, (0.6 mmol),
LiCl (0.4 mmol) in toluene(1 mL) at 170°C, 48 h. [b] Work up: reduction by
NaBH, (10 equiv) in methanol (5 mL).



Scope with respect to the aryl esters

1. [Ni{cod}s)/decype
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[a] Reaction conditions: aryl ester la—r
(0.2 mmol), benzophenone imine 2 (0.4
mmol), [Ni(cod),] (0.02 mmol), dcype
(0.04 mmol), K;PO, (0.6 mmol), LiCl
(0.4 mmol) in toluene(1 mL) at 170°C,
48 h. [b] Work up: reduction by NaBH,
(10 equiv) in methanol (5 mL).



Decarbonylative amination of naphthyl amide

1. [Ni{cod),]/dppf
N KsPOy, LIiCl NH,
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3a, 54%

An aryl amide was also used as a different electrophile.
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Proposed mechanism
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Summary

1. [Ni(cod),] (10 mol%)
o dcype (20 mol%)

Ph LiCl, toluene
L + HN=< » Ar—NH,
OPh Ph 2. Acidic Hydrolysis

Ar

» The first decarbonylative amination for the direct interconversion of esters;
» Nickel catalyzed a new and efficient route to aryl amines;

» Good chemoselectivity and good tolerance of functional groups.
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> Schimidt reaction mechanism:
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» Curtius rearrangement mechanism:

Thermal rearrangement:
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Al(OR); Additive Renders Amidation More Thermodynamically Feasible
O
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Al(OR); Additive Lowers Kinetic Barrier for Oxidative Addition
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Figure 5. Effect of the additive on the thermodynamics of amidation

and the kinetic barrier for oxidative addition as determined by DFT

calculations. Al(OMe); is used as a model for Al(OtBu); and R=

1-naphthyl.
This is due to the greater Lewis basicity of the carbonyl oxygen atom of the amide compared to that
of the ester, which therefore drives the equilibrium towards amide complex 28. The additive is also
thought to have a beneficial kinetic influence with regard to the rate-determining oxidative-addition
step. In the absence of the additive, the kinetic barrier for oxidative addition is computed to be 33.2
kcal/mol relative to [Ni(SIPr)2] 29. With the additive, however, the oxidative addition becomei6
significantly more facile, with a kinetic barrier of 26.8 kcal/mol.
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It was found that the impact of different aryl esters on the decarbonylative

C—-H coupling mechanism is greater than that on the C-H/ C-O coupling
mechanism. We concluded that the less-bulky substituted electrophiles favors the
decarbonylative C—H coupling reaction, while bulky substituted electrophiles favors

the C-H/C-0O coupling reaction. 17



